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ABSTRACT

The MIL-STD-188-110A Single Tone high frequency modem is used by the United States

military everyday as a beyond line-of-sight radio. Typically, beyond line-of-sight military

radios use satellites for reflection. Satellite time is in high demand, and since there are a

finite number of satellites in orbit, it makes over-the-air time expensive. The Single Tone high

frequency modem offers a reliable alternative by using the ionosphere, rather than a satellite, for

reflection. The ionosphere adds unique channel effects, causing the signal processing software

to be more complex and harder to debug than radios which use satellites.

Before being placed into production, the MIL-STD-188-110A Single Tone high frequency

modem is placed under comprehensive performance tests. These tests are meant to fully verify

all aspects of the software and to impose all possible channel effects such as additive white

Gaussian noise, doppler shift, terminal clock differences, frequency and time dispersion. When

a test fails, debugging the software can be tedious and time consuming. The two major steps to

quick and successful debugging are understanding and isolation. The engineer must understand

the channel model and receive path in order to correlate a test failure with a specific section

of software. After the channel model and receive path are understood, timing patterns of

bit errors and test failures caused by individual channel effects help the engineer isolate the

software defect. This thesis compiles the necessary information to understand a generalized

receive path and provides a framework for isolating a software defect.
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CHAPTER 1. INTRODUCTION

There are many types of over-the-air communications used by the United States military

today, and many are able to transmit beyond line-of-sight (LOS), but most require the use

of a satellite for reflection. Since satellites are expensive to launch and maintain, there are a

finite number of satellites in orbit, which makes satellite time high in demand and expensive

to use. High frequency (HF) offers an alternative for beyond LOS communication. HF uses

frequencies between 3 MHz and 30 MHz and relies on the earth’s ionosphere for reflection,

making beyond LOS communication possible without the use of a satellite.

Some typical challenges associated with over-the-air communication include noise, doppler

shift, and terminal clock differences. HF communication also encounters challenges associated

specifically with the use of the ionosphere. According to Furman and Nieto, “The HF channel

is characterized as a multi-path time-varying environment that produces time and frequency

dispersion.” [6]. Frequency and time dispersion add to the complexity of the signal processing

in HF radios. With the added complexity, it can be very difficult to isolate issues seen during

performance testing. This thesis provides a matrix of information to help isolate a software

defect.

1.1 HF Communication Challenges

Noise, doppler shift, and terminal clock differences occur with every over-the-air transmis-

sion, regardless of whether or not the ionosphere is used for reflection. Noise occurs over any

channel and can be thought of as a source of an additive random signal. In most cases, the

noise is assumed to be additive white Gaussian noise (AWGN). Many waveforms require a

minimum signal-to-noise ratio (SNR) to acknowledge a signal. If the noise power is too high
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with respect to the signal power, the minimum SNR is not met and the receiving terminal does

not detect the signal.

Doppler shift is caused by the relative movement of either the transmitting or receiving

terminal. It causes the receiving terminal to detect a signal that is shifted in frequency from

the expected carrier. Many waveforms have a maximum doppler shift setting for which they

correct. If the doppler shift detected is greater than this limit, the receiving terminal corrects

for the maximum doppler shift and some amount of uncorrected frequency offset remains in

the signal. This causes bit errors or a potential loss of signal.

Timing differences between the transmitting and receiving terminals are caused by the

internal clocks. If the clock on the transmitting terminal is faster or slower than the clock

on the receiving terminal, the receiving terminal slowly sees the received signal drift. If not

addressed by the receiver, this eventually causes bit errors and a loss of signal.

Frequency and time dispersion occur with communications which use the ionosphere for

reflection. Ionospheric fading occurs when the ionosphere absorbs signal energy during trans-

mission. The ionosphere absorbs signal energy at different rates, depending on the density

of the ionosphere. According to Nieto, since the density of the ionosphere is not constant or

predictable, it is impossible to find a “fixed relationship between distance and signal strength

for ionospheric propagation” [1]. Since the rate at which energy is absorbed is not constant,

it causes frequency dispersion. The top image in Figure 1.1 shows the average incoming am-

plitude with no frequency dispersion, and the bottom image shows the effects of frequency

dispersion.
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Figure 1.1 Frequency Dispersion of 3 Hz

Time dispersion occurs when a signal takes multiple paths to the receiving terminal, as seen

in Figure 1.2. According to Furman and Nieto, “the sources of multi-path are the reflections of

radio signals from different layers in the ionosphere. In addition, multiple reflections can occur

between the earth’s surface and the ionosphere” [6]. These multiple paths cause the received

signal to contain “several ‘echoes’ or modes, separated in time by a matter of milliseconds”

[6]. This makes it difficult for the receiver to decipher the signal.
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Figure 1.2 Multipath

In addition to overlapping, these signals destructively interfere as shown in Figure 1.3. This

interference appears to the receiving terminal as a single signal with fading.

Figure 1.3 Fading Caused by Time Dispersion

The two largest issues with HF communication are the effects of frequency and time disper-

sion. Since neither frequency nor time dispersion can be prevented, methods were introduced
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into the military standards to minimize their effect.

The following are possible ways to approach the time dispersion issue [1]:

• Adaptive Equalization

• Maximum Likelihood Sequence Elimination

• Guard-time protection

The following are ways of approaching the frequency dispersion issue [1]:

• Frequency Diversity

• Time Diversity

• Antenna Diversity

• Bandwidth Expansion

• Coding and Interleaving

To minimize the effects of frequency and time dispersion, the military standards for HF

communications have evolved over time to incorporate the items listed above.

1.2 HF Communication History

Military standards were created by the government to ensure commonality, compatibility

and reliability between military radios. They define the structure of communication and set

performance standards. One of the first restrictions limited the bandwidth to 3 kHz. This

maximized the number of communications that could occur over the HF frequency band.

Unfortunately, limiting the bandwidth to 3 kHz also introduced the effects of inter-symbol

interference (ISI) for digital communication.

In the early stages of HF communication, the continuous wave (CW) and amplitude modu-

lation (AM) were the most common standards for HF communication. Unfortunately, efficiency

of CW is limited to the efficiency of the user’s knowledge of Morse code. AM was popular
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because the implementation simplicity is comparable to CW, and it has the advantage that the

user does not have to be familiar with Morse code. The disadvantage to AM is the bandwidth

inefficiency. According to the HF Communications Data Book, the AM waveform “occupies a

wide spectrum and is inefficient in the sense that a great deal of unneeded carrier (5 kHz) is

generated to carry the modulation” [2]. To eliminate this inefficiency, single sideband (SSB)

waveforms were created. A SSB waveform carries the same amount of information as a double

sideband (DSB) waveform, but only transmits the upper sideband (USB) or lower sideband

(LSB), greatly reducing the needed bandwidth. One of the first standardized waveforms to use

the SSB idea was the frequency shift keying (FSK) waveform described in MIL-STD-188-110B.

Even though SSB FSK is more efficient than the previous methods, it still battles relia-

bility issues caused by frequency and time dispersion. According to the HF Communications

Data Book, “spatial diversity and frequency diversity were commonly used to improve the

reliability. However, due to bandwidth and resource limitations,” [2] another standardized

waveform, Single Tone, was introduced and can be found in MIL-STD-188-110A. The Sin-

gle Tone waveform still uses SSB for bandwidth efficiency, but instead of using spatial and

frequency diversity to battle frequency and time dispersion as FSK does, it uses encoding,

interleaving, and equalization. Single Tone will be the HF waveform focus for the remainder

of this thesis.

1.3 Performance Requirements

Interoperability is ensured in all military radios through the use of military standards. The

Single Tone modem performance standard requires that a receiver must be able to detect and

correct for a maximum doppler shift of 75 Hz [3]. There is not a specific performance require-

ment pertaining to terminal clock differences, but the modem must implement a mechanism to

correct for clock differences in order to communicate with other radios for several consecutive

hours.

In addition to doppler shift, the military standard also sets requirements for noise, frequency

and time dispersion and can be seen in Table 1.1. These standards require that a minimum
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bit error rate (BER) be met under certain channel conditions. The military standards use the

Watterson model as a channel simulator and a way to standardize the BER performance.

Table 1.1 Performance Requirements for Single Tone [3]

Data Rate Interleaver Time Delay Frequency Spread SNR Required BER

4800 None N/A N/A 17 dB 0.001
4800 None 2 msec 0.5 Hz 27 dB 0.001
2400 Long N/A N/A 10 dB 0.00001
2400 Long 2 msec 1 Hz 18 dB 0.00001
2400 Long 2 msec 5 Hz 30 dB 0.00001
2400 Long 5 msec 1 Hz 30 dB 0.00001
1200 Long 2 msec 1 Hz 11 dB 0.00001
600 Long 2 msec 1 Hz 7 dB 0.00001
300 Long 5 msec 5 Hz 7 dB 0.00001
150 Long 5 msec 5 Hz 5 dB 0.00001
75 Long 5 msec 5 Hz 2 dB 0.00001

Noise is represented in the table through SNR. The lower SNR contains higher noise levels

with respect to the signal level. When describing the HF channel, according to Furman and

Nieto, “The amount of multi-path can range up to 6 msec and the fading rate can be as high

as 5 Hz” [6]. If time dispersion is required, it is represented in the table by the arrival time

difference between the first and second signal and is measured in milliseconds. The number of

paths is fixed at two and the power of each signal is equal. Frequency dispersion is represented

as the rate at which the average signal amplitude changes, and is measured in Hz. With respect

to frequency dispersion in channel simulators, the maximum and minimum amplitudes of the

signal are predetermined, but the frequency at which it changes is modifiable.

While performance testing, it can be difficult to isolate the signal processing software to

debug the problem. As described above, there are many challenges incorporated into the HF

channel including noise, doppler shift, terminal clock differences, frequency and time dispersion.

This thesis explores debugging methods that can be used to solve test failures. The two major

steps to successful debugging are understanding and isolation. The engineer must understand

the channel model and receive path in order to correlate a test failure with a specific section of
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software. After the channel model and receive path are understood, the isolation of a software

defect through timing patterns of bit errors and individual channel effects is possible.

1.4 Organization of the Thesis

This thesis is organized in the following manner.

• Chapter 1 explains why HF communications are used and the challenges associated with

the HF channel. It also describes how the military standards have evolved over time

to minimize some of these challenges. Performance requirements, set by the military

standard, are also discussed.

• Chapter 2 presents the over-the-air specifications for the Single Tone HF waveform. Also

discussed is a high level overview of the transmit data processing.

• Chapter 3 explains the channel model and the entire receive path.

• Chapter 4 explains methods of isolating a software defect through timing patterns of bit

errors and individual channel effects.

• Chapter 5 summarizes the thesis and suggests future work.
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CHAPTER 2. MIL-STD-188-110A SINGLE-TONE MODEM

There are many different types of signal processing the HF waveform uses to communicate

signals over-the-air. Each type of processing produces a unique waveform, as described in

their respective military standards. This chapter contains an overview of the over-the-air

specifications for the Single Tone HF waveform, as described in MIL-STD-188-110A [3]. Also

discussed is a high level overview of the transmit data processing.

2.1 Over-the-air Specifications

The Single Tone waveform converts binary information into a single M-ary phase shift

keying (PSK) modulated output carrier and is described in MIL-STD-188-110A [3]. The

possible data rates defined for the Single Tone waveform are 75, 150, 300, 600, 1200, 2400,

and 4800 bits per second (bps). A forward error correction (FEC) encoding rate of 1
2 is used

along with an interleaver to minimize bit errors. The possible interleaver lengths are 0.6 and

4.8 seconds. Since interleaving comes before modulation, the length of the interleaver (in bits)

varies, depending on the data rate. See table 2.1 for a complete list of possible combinations

of data rates, interleaver lengths, encoding and modulation schemes.

Figure 2.1 illustrates the structure of a Single Tone transmission. The major components

within the transmission structure are preamble, data and probe blocks. Contained within the

last data blocks are the EOM and flush.
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Table 2.1 Data Rates, Interleaver Lengths, Encoding and Modulation
Schemes for the Single Tone waveform

Data Rate Interleaver FEC Encoding Data Modulation

75 bps 0.6 or 4.8 sec 1
2 Multiple PSK symbols per channel symbol

150 bps 0.6 or 4.8 sec 1
2 2-ary PSK scrambled to appear 8-ary

300 bps 0.6 or 4.8 sec 1
2 2-ary PSK scrambled to appear 8-ary

600 bps 0.6 or 4.8 sec 1
2 2-ary PSK scrambled to appear 8-ary

1200 bps 0.6 or 4.8 sec 1
2 4-ary PSK scrambled to appear 8-ary

2400 bps 0.6 or 4.8 sec 1
2 8-ary PSK scrambled to appear 8-ary

4800 bps 0 sec None 8-ary PSK scrambled to appear 8-ary

Figure 2.1 Single Tone Over-the-Air Structure

From the Single Tone transmission structure, there are four different states important for

transmission and reception:

• Variable Length Preamble – At the receiver, the preamble is used for initial synchroniza-

tion, relative motion doppler estimation, and automatically determining the transmitted

data rate and interleaver length (autobaud). The process of autobaud does not require

the modem to have prior knowledge of the transmitted data rate or interleaver length.

The preamble occurs at the very beginning of the transmission and is made of segments,

each 200 msec long. The interleaver length determines the number of segments trans-

mitted for the preamble, as shown in table 2.2.
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Table 2.2 Preamble Field Length for Single Tone

Interleaver Length Preamble Field Length

0.6 sec 3 segments
4.8 sec 24 segments

For an interleaver length of 0.6 seconds, the preamble contains 3 segments, and 24 seg-

ments for the 4.8 second interleaver. For each segment, there are 15 elements, each

ranging from 0 to 7. All 8 possible elements are mapped to a unique 32 bit pattern for

transmission. The receiver uses two elements within a segment to determine the auto-

baud information and three to determine the preamble count. The remaining elements

are used for synchronization.

• Variable Length Data And Probe – This portion contains alternating data (unknown) and

probe (known) fields. The probe provides the receiver with a set of known symbols. The

receiver uses these symbols to calculate a channel estimate to be used for equalization.

The probes are also used to monitor relative motion doppler and timing differences

between the transmitting and receiving radio clocks and to detect if time dispersion

exists. The number of symbols in each field is dependent on the selected data rate, as

shown in table 2.3.

Table 2.3 Data and Probe Field Lengths for Single Tone

Data Rate Data Field Length Probe Field Length

4800 bps 32 symbols 16 symbols
2400 bps 32 symbols 16 symbols
1200 bps 20 symbols 20 symbols
600 bps 20 symbols 20 symbols
300 bps 20 symbols 20 symbols
150 bps 20 symbols 20 symbols
75 bps 32 symbols 0 symbols

Notice that at 75 bps, probe fields are not used. The 75 bps rate is handled differently



www.manaraa.com

12

by the Single Tone modem and many times is considered a separate waveform. The

remainder of this thesis handles data rates 150 to 4800 bps, where probe fields are used.

• End of Message (EOM) – The end of message is embedded within the data field and

is a specific sequence that the receiving modem uses to detect the end of the current

message. Once detected at the output of the decoder, the modem knows it is the end of

the current reception and begins looking for the preamble of a new message.

• Flush Bits – The flush bits are all zeros and are contained within the data field. These

bits are used on both the transmitter and receiver to flush valid data and the EOM

through the encoder/decoder and interleaver/deinterleaver.

2.2 Top Level Transmit Data Processing

The signal processing code, or the modem, transitions through the four states, as described

in section 2.1, as soon as it begins receiving bits for transmission. The modem executes the

first state by sending the defined preamble. Once the entire preamble is sent, the transmit

modem transitions to the second state. While in the second state, the modem sends alternating

data and probe pairs, where the probe sections are known symbols and the data sections are

symbols translated from the incoming bits. Once the end of data is detected, the transmit

modem transitions to the third and fourth state, sending the EOM and flush bits, respectively.

The detailed transmit block diagram for data flow, including preamble, data and probes,

is shown in figure 2.2. In order for the signal processing code to convert bits into complex

samples to be sent to the exciter, the bits pass through an encoder, interleaver, modulator,

waveshaper, translator, and a rate change filter.
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Figure 2.2 Detailed Transmit Block Diagram

An encoder is used to limit errors in the data reception by adding redundant bits to the

transmission. The redundant bits allow the decoder to have a better chance of correctly

decoding the data, even if there are bit errors scattered throughout the received signal. In

Single Tone, the encoder uses 1
2 FEC encoding with 7 taps to encode the bits. This encoding

scheme doubles the original amount of data to be inserted into the interleaver.

The interleaver is used to scramble the data to avoid burst errors and to combat frequency

dispersion. Figure 2.3 illustrates how burst errors are scattered at a receiver. Once scattered,

the redundant bits created by the encoder allow the Viterbi decoder to have a better chance

of correctly decoding the bits. Typically, interleavers are created from a matrix of columns

and rows. The incoming data is placed into the columns in a specific order. Once the in-

terleaver is full, it is unloaded by rows. In channels which contain only AWGN, interleavers

have no advantage since bit errors occur randomly throughout the channel. However, in HF

communications, frequency and time dispersion cause burst errors which are dispersed by the

interleaver.
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Figure 2.3 Interleaver Example

Next, the encoded and interleaved data pass through a modulator. The modulator uses

gray encoding to help maximize error recovery at the receiver by ensuring the adjacent symbols

around the unit circle differ by only one bit. If the receive modem chooses a symbol incorrectly

by choosing the neighboring symbol, the result contains only one bit error. The modulator

maps the bits into complex symbols which have a constant rate of 2400 symbols per second

(sps). Figure 2.4 shows the 8-ary PSK constellation diagram for a Single Tone transmission,

created by using a data rate of 2400 bps.
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Figure 2.4 Constellation Diagram of the Modulator Output

After modulation, the data is passed through a waveshaper, where a low pass filter is applied

to the symbols. Since HF is band-limited to 3 kHz, the waveshaper limits the bandwidth of

the signal. The waveshaper also performs a 4 to 1 up-sampling, bringing the output symbol

rate up to 9600 sps. Figure 2.5 shows the frequency domain of the waveshaper output. Notice

the signal is centered at 0 Hz, and has a bandwidth of roughly 3 kHz.
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Figure 2.5 Frequency Domain of the Waveshaper Output

Let v[n] represent the output of the waveshaper. Then,

v[n] =
∞∑
k=0

I[k]g[n− k] (2.1)

where I[n] represents the symbols created from the modulator and g[n] represents the wave-

shaper. As discussed previously, band-limitation causes ISI. To minimize the effects of ISI, a

square root raised cosine is used as the low pass filter instead of a sinc function and is given

below.

g[n] =
2β

π
√
Ts

cos
[
(1 + β)π n

Ts

]
+

sin
[
(1−β)π n

Ts

]
4β n

Ts[
1−

(
4β n

Ts

)2
] [7]

Where Ts is the symbol period and β is the configurable roll-off factor. The square root

raised cosine was specifically chosen for reducing ISI, since the zero crossings in the time domain

occur at multiples of the symbol rate, or every Ts seconds [7].
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After waveshaping, the data is passed through a translator. The translator uses a complex

oscillator to shift the center frequency of the incoming signal to a +1800 Hz sub-carrier. The

equation used to shift v[n] to the +1800 Hz sub-carrier is shown in equation 2.2. Let s[n] be

the output of the translator and v[n] is the output of the waveshaper.

s[n] = Re{v[n][cos(1800n) + j sin(1800n)]}

= Re{v[n]ej2π1800n} (2.2)

The translator shifts the signal by +1800 Hz and converts it into a real signal. Figure 2.6

shows the frequency domain of the translator output. Now the 3 kHz signal is centered at

+1800 Hz.

Figure 2.6 Frequency Domain of the Translator Output

The 9.6k sps real signal is passed through a rate change filter after translation. The purpose

of the rate change filter is to decimate the 9.6k sps signal to an 8k sps signal. This filter was

designed to bridge the gap between a legacy modem and the exciter. The rate change filter
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is implemented as a polyphase filter which interpolates the 9.6k sps signal to 96k sps, then

decimates to 8k sps. The output of the rate change filter is a real 8k sps audio signal.

The rate change filter is the final block of the Single Tone modem software. The exciter,

field programmable gate array (FPGA), digital to analog converter (DAC), and transceiver

implement additional signal processing functions needed for an HF radio. The exciter has three

major responsibilities: complex bandpass filtering, LSB/USB selection, and interpolation. The

incoming real 8k sps audio signal is first passed through a complex bandpass filter. If LSB,

rather that USB, is desired, the exciter will invert the center frequency of the signal from 1800

to -1800 Hz. The exciter then interpolates the complex signal from 8k sps to 96k sps before

passing it to the FPGA. The FPGA uses a quadrature mixer to translate and interpolate the

complex 96k sps baseband signal to a complex 150M sps signal at an intermediate frequency

(IF) of 37.5 MHz. Figure 2.7 shows an image of the signal centered at ±37.5 MHz, and the

aliased signal located at ±112.5 MHz.

Figure 2.7 Quadrature Mix performed by the FPGA

The complex 150M sps signal centered at 37.5 MHz is passed from the FPGA to the DAC.

Instead of using the signal located at 37.5 MHz, the DAC uses the aliased signal at 112.5

MHz and converts it to analog. The analog signal, centered at 112.5 MHz, is passed to the

transceiver where the signal is translated a radio frequency (RF) ranging from 3 to 30 MHz.

The resulting analog signal at RF is ready for over-the-air transmission.
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CHAPTER 3. CHANNEL MODEL AND RECEIVE PATH

The first step in debugging problems encountered during performance testing is under-

standing the receive path and channel. Without this understanding it is difficult to isolate the

target software to debug, even after the channel effect causing the issue is known. A block

diagram of the entire receive path can be seen in Figure 3.1. In the figure, there are four ma-

jor blocks including the HF radio receive signal processing functionality, Single Tone receive

common, preamble and data/probe functionality.

Figure 3.1 Receive Block Diagram

As discussed in section 2.2, the exciter, FPGA, analog to digital converter (ADC), and

transceiver are four major components that are not a part of the Single Tone modem, but

contain important functionality for HF radios. These components can been seen as part of

the HF radio receive signal processing functionality in Figure 3.1, and can be seen in detail in

Figure 3.2.
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Figure 3.2 HF Radio Receive Signal Processing Functionality

The analog RF signal, ranging from 3 to 30 MHz, is sent into the tranceiver where the

signal is translated to an IF frequency of 112.5 MHz. The ADC converts the analog signal to

a complex digital signal centered at 37.5 MHz IF with a sample rate of 150M sps. The FPGA

uses a quadrature mixer to translate and decimate the complex 150M sps signal at 37.5 MHz

IF to a 96k sps baseband signal. Next, the exciter decimates the 96k sps complex baseband

signal to an 8k sps real signal. It also translates the signal from -1800 to 1800 Hz, if LSB was

used, before passing it to the Single Tone receive common functionality.

The remainder of this thesis focuses on the Single Tone receive common, preamble and

data/probe functionality in addition to the equivalent channel model. As discussed in section

2.1, the Single Tone waveform has four states including the preamble, data and probe pairs,

EOM and flush. Upon reception, all received samples proceed through common functionality.

After the common functionality, the symbols take different receive paths based on whether or

not the preamble has been received. Initially, the received samples travel the preamble path

until it is determined the entire preamble is received at which point the samples switch to the

data path. The data path is responsible for the data/probe pairs along with the EOM and

flush.

The channel model includes three major transmit blocks that have been previously dis-

cussed including the modulator, waveshaper and translator. Also included in the channel

model is AWGN and channel effects such as frequency and time dispersion.
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3.1 Equivalent Channel Model

The channel model is shown below in Figure 3.3. There are three major blocks included

in Figure 3.3 that are important to the architecture and have been previously discussed in

section 2.1. The modulator takes encoded and interleaved bits and maps them to symbols, I[n],

depending on the type of modulation. To band-limit the transmitted signal, the symbols are

placed through a low-pass filter with total bandwidth of 3 kHz, also known as the waveshaper.

A square root raised-cosine, g[n], is used to implement the low-pass filter to minimize the

effects of inter-symbol interference. After waveshaping, the signal is then translated from 0 to

1800 Hz. The outputs of the waveshaper and translator are represented by v[n] and s[n] in

Figure 3.3.

Figure 3.3 Channel Model

The output of the waveshaper, v[n], was defined in Equation 2.1 and is shown below.

v[n] =
∞∑
k=0

I[k]g[n− k]

The frequency shift of the translator is represented in Figure 3.3 by ej2π1800n and the resulting

output, s[n], was defined in Equation 2.2 and is shown below.

s[n] = Re{v[n]ej2π1800n}

In Figure 3.3, the channel effects such as doppler shift, terminal clock differences, frequency

and time dispersion, are represented by c[n] or C(z). AWGN is also added and is represented

by p[n]. The received signal can be represented in the frequency domain by,
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R(z) = S(z)C(z) + P (z)

or in the time domain,

r[n] = s[n]⊗ c[n] + p[n]

=
∞∑

k=−∞
s[k]c[n− k] + p[n]

Where ⊗ represents the convolution of two signals.

3.2 Common Functionality

As shown in Figure 3.4, the received signal, r[n], passes through some Single Tone receive

common functionality, regardless of whether it is the preamble, data and probe pairs, EOM or

flush. The common functionality block diagram is shown in detail in Figure 3.4.

Figure 3.4 Single Tone Receive Common Functionality

The first block in the diagram is the rate change filter. Similar to the transmit logic, the

rate change filter is used as an interface between two pieces of legacy code. The polyphase
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filter interpolates the 8k real signal to 96k sps before decimating down to 9.6k sps. The output

of the rate change filter is then passed to the automatic gain control (AGC).

The AGC is a control loop which uses the output signal level strength to vary the gain on

the input signal. It smoothes the amplitude envelope to avoid drastic changes in signal level,

and maximizes dynamic range. After the AGC, the received signal is shifted by the translator.

Similar to the transmit functionality, a complex oscillator is used to translate the real signal

at 1800 Hz to a complex signal at 0 Hz. The 3 kHz bandwidth of the signal remains unchanged.

The output of the translator is then passed to the waveshaper.

The waveshaper uses a transversal filter to decimate the signal by four and negate the

effects of the pulse shaping, placed on the signal at the transmitter. A block diagram of the

waveshaper can be seen in Figure 3.5. The receive waveshaper down-samples the 9600 sps

signal by four at each of the four sample timing positions, resulting in four signals at 2400

symbols per second. The down-sampling at each timing position is done to allow the receive

path to determine and use the timing position which closest resembles the transmitted signal.

Figure 3.5 Receive Waveshaper Block Diagram
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To simplify the channel model, the effects of the rate change filter, AGC, translator, and

waveshaper are filtered into the channel effects and a simplified model is shown below in Figure

3.6. The new channel and noise models are H(z) and z[n], respectively, and the new received

signal, rw[n], now represents the output of the receive waveshaper.

Figure 3.6 Simplified Channel Model

The equivalent received signal can be represented in the frequency domain by,

Rw(z) = I(z)H(z) + Z(z)

or in the time domain,

rw[n] = I[n]⊗ h[n] + z[n] (3.1)

=
∞∑

k=−∞
I[k]h[n− k] + z[n] (3.2)

3.3 Preamble Functionality

After the waveshaper, the received signal enters into the Single Tone receive preamble

functionality unless a preamble has previously been received. There are three modes of the

preamble path including acquisition, tracking and end of preamble. A block diagram of the

preamble path is shown in Figure 3.7.
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Figure 3.7 Single Tone Receive Preamble Functionality

3.3.1 Preamble Acquisition Mode

The purpose of the preamble acquisition mode is to determine the beginning of the pream-

ble. To do this, the terminal correlates the incoming signal with a section of the known

preamble sequence. The correlation is then placed through a fast Fourier transform (FFT) to

determine a noise to signal ratio (NSR). In order to declare a signal present, the NSR must be

less than a pre-defined threshold. Once it is determined that a signal is present, the current

preamble timing position is calculated based upon the index of the maximum correlation peak,

and the initial doppler offset calculated from the FFT output is fed back into the translator.

The translator uses this data to alter the frequency translation. Instead of translating by 1800

Hz, the translator shifts the signal 1800 Hz plus the initial doppler offset.

To ensure the FFT will account for a 75 Hz doppler shift, the precision of the FFT frequency

bins needs to be calculated. The symbol rate at the input of the FFT and the order of the FFT
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will determine the frequency bin precision. Assume the input symbol rate is 2400 symbols per

second and that the FFT order is 256, then the precision of the output frequency bins would

be 2400
256 = 9.375 Hz. The FFT output bins would cover a dynamic range of −1190.625 Hz

to 1200 Hz. A 256 point FFT would be very processor intensive to execute, and since the

military standard only requires the single tone modem to cover a dynamic range of −75 Hz

to 75 Hz, only 19 of the 256 bins would be used. By using 19 bins, the doppler estimate

would have a dynamic range of −84.375 Hz to 84.375 with precision of 9.375 Hz. By taking a

smaller FFT, the computation complexity would be drastically reduced, but the frequency bin

precision drastically decreases. If a 16-point FFT is performed on the 2400 symbols per second

signal, the resulting frequency bin precision would be 2400
16 = 150 Hz. To compensate for this

precision loss, a method of down-sampling can be performed prior to the FFT. Assume the

new input symbol rate to the FFT is 300 symbols per second, then the frequency bin precision

of the 16-point FFT becomes 300
16 = 18.75 Hz and the dynamic range covered would be −131.25

Hz to 150 Hz. By using 11 of the 16 bins, the doppler estimate would have a dynamic range

of −93.75 Hz to 93.75 with a precision of 18.75 Hz.

As discussed in section 2.1, the variable length preamble consists of 3 to 24 segments

depending on the interleaver length. Assuming the initial correlation detects the first segment,

2 to 23 preamble segments will be received after the end of the current segment. These

additional preamble segments can be used to avoid false acquisition. From the initial correlation

and FFT, the timing position within the preamble segment is calculated. The terminal can use

the timing position and the knowledge of the preamble to predict the number of correlations

before the NSR will again dip below the threshold. If the next correlation which slides below

the threshold matches the predicted, the preamble is declared as detected. After detection,

the terminal transitions to the preamble tracking mode.

3.3.2 Preamble Tracking Mode

The preamble tracking mode determines the preamble count and autobaud information

from the preamble. Once the preamble count is determined, this mode also keeps track of the
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number of remaining preamble segments. As discussed in section 2.1, 2 of the 15 elements

within a preamble segment contain the autobaud information and 3 of the 15 elements contain

the preamble count. The preamble count indicates the number of preamble segments remaining

before the end of the preamble.

The terminal uses the preamble timing position, determined during the preamble acquisi-

tion mode, to calculate the location of the two elements containing the autobaud information

in the current preamble segment. To determine the autobaud information, a correlation be-

tween these elements and all possible options is completed. The option, from which the largest

correlation peak is produced, is determined to be the correct data rate and interleaver length.

Like the preamble acquisition mode, a method is used to minimize the possibility of error

while detecting the autobaud information. These correlations are executed over each of the

remaining preamble segments. The correlators increment a counter pertaining to the data rate

and interleaver length detected in the current segment. At the end of the preamble, the option

which produced the most maximum correlations is used to assign the data rate and interleaver

length. This method allows for some receive errors and false positives to occur but is still able

to choose the correct autobaud information.

Another correlation is performed at the three elements containing the preamble count in-

formation. Again, the option from which the largest correlation peak is produced is used as

the preamble count value. Since the preamble can vary between 3 and 24 segments, the pream-

ble count contains the number of preamble segments remaining to be received. To minimize

the possibility of errors, this correlation is executed on consecutive preamble segments. If the

preamble count on the next frame is one less than the preamble count on the current frame,

the preamble count has most likely been determined without error.

Once the preamble count has been determined, the terminal continues to track the incoming

preamble segments until the preamble count becomes zero. When the preamble count reaches

zero, the terminal has detected the end of the preamble and transitions to the end of preamble

mode.
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3.3.3 End of Preamble Mode

During the end of preamble mode, the terminal uses the autobaud information to initialize

the deinterleaver and decoder. Also calculated at this time is an initial channel estimate, using

a least mean square (LMS) algorithm. The known end of the preamble is used along with

the received signal to calculate the initial channel estimate. This channel estimate is used to

initialize the coefficients for the matched filter, feedforward and feedback coefficients for the

zero-forcing decision feedback equalizer (ZF-DFE).

To make calculations easier for the Single Tone receive data functionality, this mode also

performs a timing adjustment. The initial timing position, calculated during initial acquisition,

is used to determine the number of preamble and data samples present in the modem. The

terminal makes an internal timing adjustment to ensure the preamble and data boundary

occurs at a specific location to allow the data path to run more efficiently.

3.4 Data/Probe Functionality

Once the end of the preamble has been determined, rather than entering the Single Tone

receive preamble functionality, the received signal takes the data/probe path after passing

through the waveshaper. As shown in Figure 3.8, the block diagram of the data path in-

cludes a probe correlator, channel estimator, matched filter, an equalizer and demodulator, a

descrambler, deinterleaver, decoder and an EOM detector. After passing through the EOM

detector, the data bits are passed to the external interface.
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Figure 3.8 Single Tone Receive Data Functionality

3.4.1 Probe Correlators

The probe correlators use the timing position to calculate the magnitude of the correlation

between the four signals from the waveshaper and the known transmitted probe sequence, as

shown in Figure 3.9. From the correlation, the terminal chooses the ideal sample position,

update the timing position, compute an SNR, check for signal dropout and monitor terminal

clock differences.
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Figure 3.9 Probe Correlators

Since each of the four signals from the waveshaper is passed through the correlator, there

are four correlation peaks, as shown in Figure 3.10. The sample position which produces the

largest correlation peak is considered to be the best timing position. The remainder of the

data path uses the signal associated with this sample position. In the example shown in Figure

3.10, the terminal would choose the signal with the third sample position since it produced the

highest correlation peak.



www.manaraa.com

31

Figure 3.10 Probe Correlation with 4 Sample Positions

To update the timing position, the terminal calculates if the peak correlation occurred where

it was expected. If it did not, the timing position can be updated from the new maximum

peak location. The SNR can also be calculated and monitored. If the SNR drops below a

threshold, the terminal declares that the signal is lost, regardless of whether or not an EOM

has been detected.

When clock differences occur between the transmitting and receiving terminals, it can

be observed during the probe correlations. As the clock drifts, the terminal sees the probe

correlations change in magnitude. If the clocks were identical, the terminal would choose the

ideal sample position during the initial data path execution and never have a need to change

it. When the clocks differ, the terminal slowly sees the adjacent peaks change amplitude,

eventually forcing the terminal to choose an adjacent peak as the new ideal sample position.
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3.4.2 Channel Estimate

From Equation 3.2, the received signal is rw[n] =
∑∞

k=−∞ I[k]h[n− k] + z[n]. The purpose

of the receiving terminal is to estimate the transmitted symbol, I[n]. In order to estimate I[n],

an estimate of the channel effects, h[n], needs to be calculated. One method that can be used

to estimate h[n] is the LMS algorithm.

3.4.2.1 LMS Algorithm

Figure 3.11 LMS Algorithm

A diagram to help describe the LMS algorithm is shown in Figure 3.11, where

• I[n] is a known transmitted preamble or probe of length M ,

• d[n] is the received preamble or probe of length M ,

• c[n] are the unknown channel effects of length L+ 1,

• h[n] are the configurable channel tap coefficients of length L+ 1,

• w[n] is the filter output where w[n] =
∑L

k=0 I[k]h[n− k] of length M − L+ 1,

• e[n] is the error between the received preamble or probe and the filter output where

e[n] = d[n]− w[n] and is of length M − L+ 1
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The LMS algorithm initializes the tap coefficients, h[n], to an initial value. The output

of the filter and error are estimated and are used to update the new tap coefficients. Multi-

ple iterations minimize the error, e[n], and produce a known filter that closely resembles an

unknown filter, C(z). The steps to the LMS algorithm are shown below.

• Initialize filter coefficients, h, to zero

• Calculate all M − L+ 1 w[n]s where, w[n] =
∑L

k=0 I[k]h[n− k]

• Calculate all M − L+ 1 e[n]s where, e[n] = d[n]− w[n]

• Calculate all L+ 1 hnews where,

hnew[n] = h[n]− 1
2
B

[
d

dh

[
E
(
|e[n]|2

)]]
= h[n]− 1

2
B

[
2E
(
d

dh

[
|e[n]|2

])]
= h[n]−B

[
E

(
d

dh

[
|e[n]|2

])]
= h[n]−B

[
E

(
d

dh
[e[n]e[n]∗]

)]
= h[n] +B [I[n]e[n]∗]

• Repeat all steps except the first initialization step

Once the L+ 1 taps of the channel estimate have been estimated, rw[n] from Equation 3.2

can be rewritten as,

rw[n] =
L∑
k=0

I[k]h[n− k] + z[n]

3.4.3 Matched Filter, Equalizer, and Demodulator

The first two blocks of the data path, the probe correlator and the channel estimator,

produce control data by comparing the received signal with known probe data. The control

data from the channel estimate is used to configure the matched filter, feedforward and feedback

coefficients of the ZF-DFE.
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3.4.3.1 Matched Filter

According to Proakis [5], the optimal demodulator can be realized as a matched filter to

the channel estimate, h[n], having impulse response h∗[−n] [5], as shown in Figure 3.12.

Figure 3.12 Matched Filter at the Receiver

Using Equation 3.1 where rw[n] = I[n]⊗h[n] + z[n], the output of the matched filter, y[n], can

be defined as,

y[n] = rw[n]⊗ h∗[−n]

= (I[n]⊗ h[n] + z[n])⊗ h∗[−n]

= I[n]⊗ h[n]⊗ h∗[−n] + z[n]⊗ h∗[−n] (3.3)

Let x[n] = h[n] ⊗ h∗[−n], where h[n] has non-zero values from 0 ≤ n ≤ L and h∗[−n] has

non-zero values from −L ≤ n ≤ 0. Then x[n] has non-zero values from −L ≤ n ≤ L, and

x[n] =
L∑
k=0

h∗[−k]h[n− k] (3.4)

Then Equation 3.3 can be simplified to

y[n] = I[n]⊗ x[n] + z[n]⊗ h∗[−n] (3.5)

=
L∑

k=−L
I[k]x[n− k] +

0∑
k=−L

z[k]h∗[−n− k]

=
−1∑

k=−L
I[k]x[n− k] + I[n]x[0] +

L∑
k=1

I[k]x[n− k] +
0∑

k=−L
z[k]h∗[−n− k]

The I[n]x[0] term is the desired symbol at the nth sample, the terms
∑−1

k=−L I[k]x[n− k] and∑L
k=1 I[k]x[n− k] represent ISI and

∑0
k=−L z[k]h∗[−n− k] is colored noise.
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3.4.3.2 Zero-Forcing Decision Feedback Equalizer

The purpose of an equalizer is to reverse the channel effects. According to Proakis, the

decision feedback equalizer (DFE) is comprised of two filters, a feedforward filter and a feedback

filter, as shown in Figure 3.13. The purpose of the feedforward filter is to clean the symbols

before entering the detector. The feedback filter removes ISI from the current detected symbol

caused by previous symbol detection [5].

Figure 3.13 Matched Filter and Zero-Forcing Decision Feedback Equalizer

Where Î[n] is the estimate of the nth symbol and Ĩ[n] are previously detected symbols. The

feedforward filter has K1 +1 tap coefficients b[n] and the feedback filter has K2 tap coefficients

a[n]. The output of the equalizer, Î[n], can be defined as,

Î[n] = β[n]− α[n] (3.6)

Using Equation 3.5, y[n] = I[n]⊗x[n] + z[n]⊗h∗[−n], where y[n] is the output of the matched

filter. Then, the output of the feedforward filter, β[n], can be defined as,

β[n] = y[n]⊗ b[n]

= (I[n]⊗ x[n] + z[n]⊗ h∗[−n])⊗ b[n]

= I[n]⊗ x[n]⊗ b[n] + z[n]⊗ h∗[−n]⊗ b[n] (3.7)

Let q[n] = x[n]⊗ b[n], where x[n] has non-zero values from −L ≤ n ≤ L and b[n] has non-zero

values from −K1 ≤ n ≤ 0. Then q[n] has non-zero values from −K1 − L ≤ n ≤ L and
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q[n] =
0∑

k=−K1

x[k]b[n− k] (3.8)

Then the output of the feedforward filter, can be simplified using the definition of q[n] and

Equation 3.7.

β[n] = I[n]⊗ q[n] + z[n]⊗ h∗[−n]⊗ b[n]

=
L∑

k=−L−K1

I[k]q[n− k] + z[n]⊗ h∗[−n]⊗ b[n]

=
−1∑

k=−L−K1

I[k]q[n− k] + I[n]q[0] +
L∑
k=1

I[k]q[n− k] + z[n]⊗ h∗[−n]⊗ b[n] (3.9)

The I[n]q[0] term is the desired symbol at the nth sample, the terms
∑−1

k=−L−K1
I[k]q[n − k]

and
∑L

k=1 I[k]q[n − k] represent ISI and z[n] ⊗ h∗[−n] ⊗ b[n] is colored noise. Now Equation

3.6, or the output of the equalizer, can be expanded using Equation 3.9.

Î[n] = I[n]q[0] +
−1∑

k=−L−K1

I[k]q[n− k] +
L∑
k=1

I[k]q[n− k] + z[n]⊗ h∗[−n]⊗ b[n]− α[n] (3.10)

The output of the feedback filter, α[n], can be defined as,

α[n] = Ĩ[n]⊗ a[n]

=
K2∑
k=1

Ĩ[k]a[n− k] (3.11)

Then the output of the equalizer can be expanded further using the output of the feedback

filter, Equation 3.11, and Equation 3.10.

Î[n] = I[n]q[0] +
−1∑

k=−L−K1

I[k]q[n− k] +
L∑
k=1

I[k]q[n− k] + z[n]⊗ h∗[−n]⊗ b[n]

−
K2∑
k=1

Ĩ[k]a[n− k] (3.12)
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The purpose of a zero-forcing equalizer is to minimize the effects of ISI. To do this, the feedfor-

ward and feedback coefficients need to be initialized using certain conditions. Assume K2 ≤ L

then Equation 3.12 can be expanded as,

Î[n] =
−1∑

k=−L−K1

I[k]q[n− k] + I[n]q[0] +
K2∑
k=1

I[k]q[n− k] +
L∑

k=K2+1

I[k]q[n− k]

+ z[n]⊗ h∗[−n]⊗ b[n]−
K2∑
k=1

Ĩ[k]a[n− k] +

[
K2∑
k=1

Ĩ[k]q[n− k]−
K2∑
k=1

Ĩ[k]q[n− k]

]

=
−1∑

k=−L−K1

I[k]q[n− k] + I[n]q[0] +
L∑

k=K2+1

I[k]q[n− k] + z[n]⊗ h∗[−n]⊗ b[n]

+
K2∑
k=1

(
I[k]− Ĩ[k]

)
q[n− k]−

K2∑
k=1

Ĩ[k] (q[n− k]− a[n− k]) (3.13)

Assume that the detector is making good decisions, such that Ĩ[n] = I[n], and assign the K2

feedback coefficients, a[n], to

a[n] = q[n] (3.14)

where q[n] is defined in Equation 3.8, then Equation 3.13 can be reduced to,

Î[n] =
−1∑

k=−L−K1

I[k]q[n− k] + I[n]q[0] +
L∑

k=K2+1

I[k]q[n− k] + z[n]⊗ h∗[−n]⊗ b[n]

The ISI is reduced to
∑−1

k=−L−K1
I[k]q[n−k] and

∑L
k=K2+1 I[k]q[n−k]. To completely eliminate

the ISI, the feedforward coefficients need to be assigned such that,

q[n] =

 1 for n = 0

0 for −L−K1 ≤ n ≤ −1 and K2 + 1 ≤ n ≤ L

Assume that K1 ≥ L and define the following vectors and matrices,
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q =



q[−K1 − L]

q[−K1 − L+ 1]
...

q[−K1]

q[−K1 + 1]
...

q[−L− 1]

q[−L]
...

q[L−K1]

q[L−K1 + 1]
...

q[−1]

q[0]

q[K2]

q[K2 + 1]
...

q[L]



=



0

0
...

0

0
...

0

0
...

0

0
...

0

1

0

0
...

0



, b =



b[−K1]

b[−K1 + 1]
...

b[−1]

b[0]


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X =



x[−L] x[−L− 1] · · · x[−L−K1 + 1] x[−L−K1]

x[−L+ 1] x[−L] · · · x[−L−K1 + 2] x[−L−K1 + 1]
...

...
. . .

...
...

x[0] x[−1] · · · x[−K1 + 1] x[−K1]

x[1] x[0] · · · x[−K1 + 2] x[−K1 + 1]
...

...
. . .

...
...

x[K1 − L− 1] x[K1 − L− 2] · · · x[−L] x[−L− 1]

x[K1 − L] x[K1 − L− 1] · · · x[−L+ 1] x[−L]
...

...
. . .

...
...

x[L] x[L− 1] · · · x[L+ 1−K1] x[L−K1]

x[L+ 1] x[L] · · · x[L+ 2−K1] x[L+ 1−K1]
...

...
. . .

...
...

x[K1 − 1] x[K1 − 2] · · · x[0] x[−1]

x[K1] x[K1 − 1] · · · x[1] x[0]

x[K2 +K1] x[K2 +K1 − 1] · · · x[K2 + 1] x[K2]

x[K2 +K1 + 1] x[K2 +K1] · · · x[K2 + 2] x[K2 + 1]
...

...
. . .

...
...

x[K1 + L] x[K1 + L− 1] · · · x[L+ 1] x[L]


Where q is a 2L + K1 − K2 vector of the desired response, b is a K1 + 1 vector of the

configurable feedforward coefficients, and X is a 2L+K1−K2 by K1 +1 matrix of the channel

estimate’s autocorrelation, then q = Xb. There are 2L + K1 − K2 equations with K1 + 1

unknowns. To simplify, K1 + 1 of the 2L+K1 −K2 equations can be chosen. Note that x[n]

has non-zero values over the range −L ≤ n ≤ L, so it seems most logical to choose q[−K1]

through q[0]. Then q and X can be simplified to create a subset of K1 + 1 equations to solve.
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qsimplified =



q[−K1]

q[−K1 + 1]
...

q[−L− 1]

q[−L]
...

q[L−K1]

q[L−K1 + 1]
...

q[−1]

q[0]



=



0

0
...

0

0
...

0

0
...

0

1



Xsimplified =



x[0] x[−1] · · · x[−K1 + 1] x[−K1]

x[1] x[0] · · · x[−K1 + 2] x[−K1 + 1]
...

...
. . .

...
...

x[K1 − L− 1] x[K1 − L− 2] · · · x[−L] x[−L− 1]

x[K1 − L] x[K1 − L− 1] · · · x[−L+ 1] x[−L]
...

...
. . .

...
...

x[L] x[L− 1] · · · x[L+ 1−K1] x[L−K1]

x[L+ 1] x[L] · · · x[L+ 2−K1] x[L+ 1−K1]
...

...
. . .

...
...

x[K1 − 1] x[K1 − 2] · · · x[0] x[−1]

x[K1] x[K1 − 1] · · · x[1] x[0]


The feedforward coefficients, b[n], need to be assigned such that,

qsimplified = Xsimplifiedb

b = XT
simplifiedqsimplified (3.15)
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To minimize processing, the LMS algorithm could be used to initialize the feedforward coef-

ficients where b would be the configurable tap coefficients, X would be the ideal input, and

q would be the desired response. The implementation discussed above documents the current

implementation, but can be improved.

3.4.3.3 Detector / Demodulator

The detector receives the equalized symbol, Î[n], and compares it with the ideal constel-

lation diagram. The ideal symbol which minimizes the Euclidean distance to the equalized

symbol is selected as the detected symbol, Ĩ[n]. This detected symbol is then used in the

feedback loop of the ZF-DFE, as Ĩ[n].

Opposite of the modulator, the demodulator translates the detected symbols into soft

decisions. If the decoder incorrectly chooses the detected symbol, the gray decoding minimizes

bit errors by having neighboring symbols on the constellation diagram differ by one bit. The

soft decisions are then passed to the deinterleaver.

3.4.4 Deinterleaver, Decoder, and EOM Detector

The deinterleaver performs the opposite operation of the interleaver. It descrambles the

received data bits, scattering burst errors across multiple code words to make it possible for

the decoder to correct the errors. Similar to the interleaver, the incoming data bits are placed

into columns in a specific order. Once the deinterleaver is full, the bits are unloaded by rows.

After deinterleaving, the bits are passed to the decoder.

A viterbi decoder is used to decode the FEC encoded data bits. The decoded data bits from

the viterbi decoder are passed to the EOM detector. The EOM detector performs a correlation

between the bits from the decoder and the known EOM sequence. If the resulting correlation

peak is larger than or equal to the EOM detection threshold, the EOM has been detected.

Typically the EOM threshold is set such that no bit errors are allowed in the received EOM.

If the EOM is not successfully detected, the terminal eventually detects a signal loss when the

probe correlators see the SNR drop below a threshold.
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CHAPTER 4. ISOLATION OF THE SOFTWARE DEFECT USING BIT

ERROR TIMING AND CHANNEL EFFECTS

After the channel model and receive path are understood, the next step in debugging the

Single Tone modem is isolating the software defect. By using the timing of bit errors, and

applying channel effects individually, the debugging efforts can be focused to a certain area

of software. The timing of bit errors can reveal a lot about the location of the problem. Bit

errors which occur at the beginning of the reception indicate a different software defect, than

bit errors occurring at the end. If bit errors occur during the middle of the reception, typically

more information needs to be obtained to further determine the area of software to debug. To

obtain more information, channel effects are applied individually to allow the software defects

associated with each channel effect to be isolated and debugged.

4.1 Software Isolation using Bit Error Timing

Bit errors which occur during testing, may have a repeatable timing pattern that may help

to isolate the software issue. Each bit error position leads to a different section of code to help

begin the debugging process.

4.1.1 Errors at the Beginning of the Reception

If bit errors occur at the beginning of the reception, the area of code to begin debugging

is the preamble path. As discussed in Section 3.3, there are three modes of the preamble path

including acquisition, tracking and end of preamble detection. Bit errors at the beginning of

the reception indicate that the preamble path is the source of the defect, but does not give

enough information to positively determine in which preamble path mode the issue occurs.



www.manaraa.com

43

Preamble Path - Preamble Acquisition Mode: Preamble Correlators

As discussed in Section 3.3.1, the main purpose of the preamble acquisition mode is to

detect the preamble, and calculate initial timing position and doppler shift. The terminal

typically has a method in place within the preamble correlators to avoid false detection. The

method previously discussed uses the maximum correlation from two consecutive preamble

segments and the timing between them to avoid false detection. This method helps to avoid

false detection, but cannot completely prevent it. If the bit errors at the beginning of the

reception are seen on a regular basis, false detection is not the issue, since it would not occur

regularly. If the errors observed occur occasionally, false detection could be the issue and the

incoming data should be captured. Use the captured data to step through the software and

observe the correlation peaks throughout the received signal. Although the probability is low,

the received signal could have random data that is similar enough to the preamble that it

produces two correlator peaks with a low enough NSR to pass the threshold. By forcing the

code to ignore the original correlator peaks, it may be seen that a correlator peak with much

lower NSR occurs further into the reception.

The second purpose of the preamble acquisition mode is to calculate an initial timing

position from the output of the preamble correlation. The initial timing position is calculated

by comparing the index of the maximum correlation peak to the known preamble. It would be

easy to miscalculate and misuse the timing position. Assume a piece of the preamble sequence

looks like Equation 4.1, where each entry within I[n] represents a preamble element.

I[n] = [7 2 1 4 0 0 0 0 0 0 0 0 3 5 6] (4.1)

Assume the received signal is given in Equation 4.2,

d[n] = [0 0 0 3 5 6 7 2 1 4 0 0 0 0 0] (4.2)

Table 4.1 shows an example of a correlation between the received signal and the sequence

7 2 1 4.
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Table 4.1 Preamble Sequence Example

d [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
Value 0 0 0 3 5 6 7 2 1 4 0 0 0 0 0 0

n=0 7 2 1 4
n=6 7 2 1 4
n=12 7 2 1 4

From Table 4.1, the maximum correlation occurs at n = 6. If the receiving terminal was

expecting the 7 2 1 4 sequence to occur at indices [0], [1], [2], and[3], respectively, then the

initial timing indicates the received signal is six indices off from the expected. One needs to

make sure that the method used to indicate the initial timing is throughout the entire receive

path.

Preamble Path - Preamble Acquisition Mode: FFT

The preamble acquisition mode also calculates the initial doppler shift. To calculate the

initial doppler shift, an FFT is performed on the correlation between the received signal and

known preamble. The precision of each frequency bin depends on the incoming sample rate,

and the order of FFT. This doppler shift estimate is fed into the translator and the preamble

is re-correlated. If an incorrect doppler shift estimate is calculated, the re-correlation produces

smaller peaks than the original correlation.

Preamble Path - Preamble Tracking Mode: Preamble Count Correlators

As discussed in Section 3.3.2, the preamble tracking mode determines the preamble count

and uses it to determine when the last preamble segment is received. The terminal typically

has a method in place within the preamble count correlators to avoid false calculation. The

method previously discussed uses the preamble count captured in two consecutive preamble

segments and performs a check to see if the later count is one less than the earlier. This

method helps avoid false detection, but cannot completely prevent it. If the bit errors at the

beginning of the reception are seen on a regular basis, false preamble count detection is not

the issue, since false detection would not occur regularly. If the errors occur occasionally, false
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preamble count detection could be the issue and the incoming data should be captured. The

preamble count for each segment can be calculated if the interleaver length of the transmitting

terminal is known. A short interleaver produces 3 preamble segments and a long interleaver

produces 24 segments. By stepping through the code a comparison can be made between the

preamble count determined from the received signal and the known preamble count. Although

the probability is low, the received signal could have bit errors occur such that the preamble

count from two consecutive segments have a difference of one, but are still incorrect.

Preamble Path - End of Preamble Mode: Initialization for Data Mode

Section 3.3.3 describes the end of preamble mode. A major function of the end of preamble

mode is calculating a channel estimate and adjusting the timing position of the received signal.

During the end of preamble mode, an initial channel estimate is performed, to be used on the

first data frame. The channel estimate is calculated using the LMS algorithm discussed in

Section 3.4.2.1. The first step to ensure that the channel estimate is being calculated correctly

is to check the software logic against the LMS algorithm. Using Equation 4.1 and Section

3.4.2.1 as a reference, w[n] =
∑L

k=0 I[k]h[n− k] and,

w[I[3]] = h[0]I[3] + h[1]I[2] + h[2]I[1] + h[3]I[0]

Following the LMS algorithm outlined, Equation 4.2 can be used to calculate e[n], where d[I[3]]

is located at index d[9].

e[I[3]] = d[I[3]]− w[I[3]]

= d[9]− w[I[3]]

It would be very easy to use the wrong indices when calculating the channel estimate. For

instance, rather than using the received symbol thought to be I[3], perhaps d[I[2]] is used

instead. The software implementing this algorithm needs to be checked very thoroughly. The

initial channel estimate is only used for the first frame of data, so bit errors occurring at the

beginning may be caused by an error in the LMS logic.
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4.1.2 Errors at the End of the Reception

If bit errors occur at the end of the reception, the area of code to begin debugging is the

data path. As discussed in Section 3.4, the receive path contains a probe correlator, channel

estimator, matched filter, an equalizer and demodulator, a descrambler, deinterleaver, decoder

and an EOM detector. The main focus for errors occurring at the end of a reception is the

EOM detector. As discussed in Section 3.4.4, only the data bits prior to the EOM are sent to

the external interface.

Data Path - EOM Detector

One possible cause of bit errors may be related to bit boundary differences between the

transmitting and receiving terminals. For example, if the implementation of the transmitting

terminal is limited to 16-bit boundaries, rather than 8-bit boundaries, the valid data bits must

be zero-padded before the EOM is attached. If this is occurring the receiving terminal will see

less than 16 bits of padding prior to the EOM. Since the logic assumes all bits prior to the

EOM are valid, the extra zeros are sent to the external interface and logged as errors. The

only method to check if this is occuring is to check the decoder output. By sending all ones,

the data directly before the EOM should be ones, rather than zero-padding. If the data is

zero-padded, there is nothing the engineer can do except make a design change.

Another potential issue which causes bit errors at the end of the reception is the EOM

detection logic. The terminal may rely on the probe correlators to detect a signal loss and

mark the end of the reception, if the logic for EOM detection is incorrect. Bit errors could

occur if the EOM or data past the EOM is sent to the external interface. By checking the

output of the decoder, it can be determined whether or not the EOM is present. If the EOM is

never seen within the decoded bits, there may be a mismatch between the number of interleaver

flush bits sent by the transmitting terminal and the number of flush needed by the receiving

terminal.
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4.1.3 Errors Throughout the Reception

If bit errors occur throughout the reception, both the preamble and data paths have po-

tential areas of interest. They include the initial doppler shift estimate within the preamble

acquisition mode, autobaud detection within the preamble tracking mode, the timing adjust-

ment performed during the end of preamble mode, and the deinterleaver with the data path.

Preamble Path - Preamble Acquisition Mode: FFT

According to the MIL-STD-188-110A [3], the single tone modem is only required to com-

pensate for a doppler shift of 75 Hz. Within the preamble acquisition mode, an initial doppler

shift estimate is performed by placing the correlation of the received signal and the known

preamble through an FFT. If the doppler shift is determined to be larger than 75 Hz, the

terminal will only correct for 75 leading to bit errors and loss of synchronization. By check-

ing the output of the FFT, it can be determined if the doppler shift is greater than 75 Hz.

If it is, corrections need to be made within the test equipment to stay within the military

specifications.

Preamble Path - Preamble Tracking Mode: Autobaud Information Correlators

During preamble tracking mode, the terminal correlates on all possible interleaver length

and data rate options to see which produces the greatest correlation peak. If the logic to

determine the autobaud information is wrong, the incorrect data rate or interleaver length

would cause bit errors throughout the reception. Compare the detected autobaud information

with the known transmitting terminal’s data rate and interleaver length to determine if they

were correctly received.

Preamble Path - End of Preamble Mode: Timing Adjustment

The other task performed by the end of preamble mode is a timing adjustment. From

Table 4.1, it was shown that the received signal was offset by six. To make data mode easier,

the received signal is internally shifted such that the boundary between the end of preamble

and data has an offset of zero. When performing this function, it is easy to make a mistake

associated with array indices. It is also easy to request an incorrect amount of samples from

the receiver during the first frame of data, since a portion of the first data frame was received
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during the final preamble segment. Stepping through the software to check all logic is correct

is a quick and easy method to ensure a correct timing adjustment.

Data Path - Deinterleaver

If the bit errors are caused by the deinterleaver on the data path, it would be easy to

identify. The bit errors seen during the reception typically occur in a periodic manner and

the period may resemble the length of the selected deinterleaver. If the period does resemble

the deinterleaver length, one area of interest may be the logic within the deinterleaver which

switches between loading and unloading.

When bit errors occur during the beginning or the end of a reception, there are fewer

possible software issues, than when they occur in the middle of the reception. Typically, more

information needs to be obtained to further determine the area of software to debug. The bit

errors may be related to an AGC frequency dispersion issue. Perhaps the probe correlators

are not choosing the correct peak for time dispersion. There are many more blocks within the

data path that may be contributing to the bit errors received in the middle of the reception,

but more debug information is needed. Another method of capturing debug information is

to isolate the individual channel effects. By isolating each channel effect, software defects

associated with each issue are easier to isolate and debug.

4.2 Software Isolation using Channel Effects

In addition to using bit error timing to isolate the software issue, applying channel effects

individually is another method that should be used. Bit errors which occur because of terminal

clock differences indicate a different software issue than bit errors caused by frequency disper-

sion. By isolating individual channel effects, software defects relating to each can be debugged

before combining them together for performance testing.

It is generally easier to isolate the individual channel effects if the transmit and receive

software can be placed in an 8k sps loopback mode. By placing the modem in 8k sps loop-

back, the Single Tone modem software is completely isolated, yet the entire modem is tested.

To accomplish this, a loop is placed at the output of the transmit rate change filter to the
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input of the receive rate change filter. This can eliminate some of the effects of using multiple

radios, such as terminal clock differences and doppler shift. The loopback also allows the engi-

neer to simulate doppler shift, terminal clock differences, noise, frequency and time dispersion

independently.

4.2.1 Doppler Isolation

Doppler shift is caused by the relative movement of either the transmitting or receiving

terminal. It causes a frequency change to occur on the signal that the receiving terminal is

not expecting.

Simulation

As discussed in Section 2.2, the transmit translator shifts the complex signal by +1800 Hz

and converts it into a real signal. The output of the translator results in a 3 kHz bandwidth

signal, centered at 1800 Hz and can be seen in Figure 2.6. To simulate a doppler shift, test

code can be added to the transmit translator to shift the signal 1800 Hz plus a doppler shift.

The top image in Figure 4.1 shows the output of the transmit translator with a doppler shift

of 0 Hz. The bottom image shows an offset of 70 Hz.
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Figure 4.1 Frequency Domain of the Translator Output with 0 and 70 Hz

Doppler

Receive Software Expectations

On the receive path, the doppler shift estimate is calculated from the FFT output of the

correlation between the received signal and the known preamble sequence. If the doppler shift

is 70 Hz, the maximum peak correlation should occur in the bin representing 75 Hz. Figure

4.2 shows the output of the FFT with a doppler shift of 0 Hz and 70 Hz.
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Figure 4.2 Acquisition FFT Output with 0 and 70 Hz Doppler

By using the 8k sps audio loopback, the doppler shift can be set and controlled on the

transmit translator. All doppler shift ranges can be tested from −75 Hz to 75 Hz and the

calculated offset on the receive FFT can be compared to the known value set at the modified

transmit translator. Loopback mode can hide some interoperability errors with existing radios

and should be used as one method of debugging. After all errors seen in loopback mode are

corrected, the engineer should retest the software by using an existing radio such as a Q-9604

or an MDM-3001.

If the FFT output does not resemble the expected doppler shift estimate, and the doppler

shift is large enough to be seen in the frequency domain at the output of the transmit translator,

check both the output of the transmit translator and the input to the receive translator. If

the two graphs do not match, there is probably an error in the rate change filter. If the two

graphs are the same and the doppler shift can be seen in both, the section of software to begin

debugging is the receive translator, waveshaper, down-sampling prior to the FFT, and the FFT

implementation.
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4.2.2 Terminal Clock Difference Isolation

Terminal clock differences occur whenever the transmitting and receiving terminals are not

using the same clock. One clock is faster or slower in reference to the other clock, causing drift

in the signal which the receiving terminal is not expecting.

Simulation

A method of inducing clock drift in 8k sps loopback mode is to add test code to the transmit

rate change filter. The transmit rate change filter converts the 9.6k sps audio signal to an 8k

sps audio signal by first up-sampling by 10 to create a signal at 96k sps. Then the signal is

down-sampled by 12 to create a signal at 8k sps. To create the illusion of clock drift, create

test code to either add or subtract a sample every second from the 96k sps signal.

Receive Software Expectations

Clock drift can easily be detected at the receive probe correlators. As described in Section

3.4.1, the probe correlators determine the ideal sample position by correlating each of the four

sample positions with the known probe sequence. At the output of the probe correlator, there

are four correlation peaks as shown in Figure 3.10. One has a maximum amplitude, the two

adjacent peaks have roughly equal magnitude and the final peak has the smallest magnitude.

If the signal is drifting due to terminal clock differences, the probe correlations will change over

time. One of the two adjacent peaks will gain amplitude, while the other will lose. Eventually,

the original adjacent peak will take over as the maximum correlation peak, while the initial

maximum peak will become an adjacent peak. Figure 4.3 shows this transition.
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Figure 4.3 Original Probe Correlation and after Drift

As shown in Figure 4.3, the original probe correlation can be seen at the top image. The

maximum correlation peak occurs at the third sample position, while the second and fourth

peaks contain roughly equal power. As clock drift occurs, the second peak grows in power,

while the other adjacent peak weakens in power. The bottom image in Figure 4.3 shows the

second peaks growing enough in power to pass the third peak to become the new ideal sample

position.

One common method to solve clock drift is to force the probe correlations to stay stationary.

By monitoring the probe correlation peaks, samples can be added or subtracted in the receive

rate change filter. Correlation peak fluctuate naturally. Be sure a method is in place to ensure

any peak changes are not just natural fluctuations. For instance, when one of the two adjacent

peaks is a certain percentage higher than the other for a pre-determined time, the software

knows it is not natural fluctuation and signals the rate change filter that drift is occurring.

If the leading adjacent peak is greater than the lagging, then the receiving terminal’s clock is

running slower than the transmitting terminal’s clock. To compensate for this difference the
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receive rate change filter drops samples to advance ahead and speed up the receive clock. If the

lagging adjacent peak is growing larger than the leading, then the receiving terminal’s clock

is running faster than the transmitting terminal’s clock. The receive rate change filter adds

samples to slow the receive clock as a method to compensate.

If the receiving terminal detects a signal loss, or the engineer observes the correlation peaks

changing in the debugger, this indicates that the logic to correct for terminal clock differences

is not working. First, check that the receive rate change filter is being instructed the same

command as the transmit rate change filter. If the test code is simulating clock drift by

slowing down the transmit clock, then the logic which keeps track of the adjacent correlator

peaks should instruct the receive rate change filter to also slow down. If the opposite command

is being given to the receive rate change filter, the engineer should begin debugging the logic

maintaining the adjacent correlator peaks.

The frequency of altering the transmit and receive clocks within the rate change filters

should also be checked. If the test code within the transmit rate change filter is adding or

subtracting one sample per second, then the receive rate change filter should also be adding or

subtracting at roughly the same rate. If the frequencies are not similar, the logic within the

probe correlators which determines how frequently the receive rate change filter is called needs

to be modified.

4.2.3 Noise Isolation

Noise occurs over any channel and can be thought of as a source of an additive random

signal. In the case of Single Tone, it is assumed to be AWGN.

Simulation

Two methods of simulating noise, frequency dispersion and time dispersion are: using a

software channel simulator in 8k sps loopback mode, and using an existing modem as a channel

simulator in audio mode. The first method inserts a software channel simulator within the 8k

sps audio loopback mode. The second method takes the modem software out of 8k sps loopback

mode, and uses two external, existing modems. Two examples of existing modems that could
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be used are a Q-9604 and an MDM-3001. As an example hardware configuration, a Q-9604 can

be used as a transmitting terminal, while the MDM-3001 can be placed between the Q-9604

and the modem software under test and configured to an HF channel simulator mode. Since

the modem software under test needs to be taken out of the 8k sps loopback mode and uses

two other external terminals, this method should only be used if the engineer is confident that

all doppler shift and terminal clock issues have already been resolved.

Receive Software Expectations

On the receive data path, the major components for controlling bit errors seen on data

are the matched filter, equalizer/demodulator, deinterleaver, and decoder. Unfortunately,

the equalizer used in the Single Tone modem is a ZF-DFE which enhances noise, so the

equalizer/demodulator does not help a signal recover from AWGN.

The effects of AWGN can be seen in the receive constellation diagrams. Figure 2.4 shows

the original constellation diagram of the transmitted signal. Figure 4.4 shows the constellation

diagram at the output of the equalizer for a channel SNR of 40 and 15 dB. In noisier channels,

the constellation diagram becomes fuzzier.
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Figure 4.4 Equalzied Constellation Diagram with 40 dB and 15 dB SNR

Euclidean distance is used within the demodulator to map the received symbols to bits, or

soft decisions. In noisier channels, the Euclidean distance is significantly greater between the

received and the ideal symbols. If the Euclidean distance is large enough, the demodulator

may choose a neighboring symbol, rather than the ideal symbol. Since gray encoding is used,

if a neighboring symbol is chosen instead of the ideal, only one bit error will occur in that

group of bits.

As described, in Section 2.2, interleavers have no advantage in channels which contains

only AWGN, since bit errors occur randomly throughout the channel. The only component

to correct bit errors caused by noise is the viterbi decoder. If bit errors are seen in channels

where only AWGN is present, the logic in the viterbi decoder is the software of interest for

debugging.
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4.2.4 Frequency Dispersion Isolation

The ionosphere absorbs signal energy at different rates, depending on the density of the

ionosphere. Since the rate at which energy is absorbed is not constant, it causes varying signal

amplitudes, or frequency dispersion.

Simulation

As discussed in Section 4.2.3, there are two methods to simulate frequency dispersion.

Assuming the doppler shift and terminal clock difference issues have already been resolved, the

second method using two existing radios is preferred. Frequency dispersion is a time-varying

fade which causes the average input signal level to the terminal to vary. Unfortunately, within

channel simulators, only the frequency of the fade, not the magnitude, is configurable.

Receive Software Expectations

Frequency dispersion can be seen on the amplitude on the incoming signal. Figure 4.5

shows the average magnitude of the input signal to the terminal with 0 and 5 Hz of frequency

dispersion.
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Figure 4.5 Average Incoming Magnitude with 0 and 5 Hz of Frequency

Dispersion

Receive Software Expectations

If errors are seen with frequency dispersion, there are two potential issues. One issue is the

magnitude level and the other is frequency. The top image in Figure 4.6 shows the average

incoming magnitude with 5 Hz of frequency dispersion. The bottom image shows when bit

errors are detected at the output of the decoder.
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Figure 4.6 Average Incoming Magnitude and Corresponding Bit Errors

with 5 Hz of Frequency Dispersion

At first glance, Figure 4.6 appears to have massive bit errors due to frequency dispersion,

when the bit errors may be caused by high or low amplitude, not the frequency. To isolate the

potential issue with the magnitude, begin with 0.5 msec of frequency dispersion. By setting

the frequency low, errors due to the average amplitude changing rapidly should be eliminated.

The top image in Figure 4.7 shows the average incoming magnitude with 0.5 Hz of frequency

dispersion. The bottom image shows when bit errors are detected at the output of the decoder.
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Figure 4.7 Average Incoming Magnitude and Corresponding Bit Errors

with 0.5 Hz of Frequency Dispersion

The bursty bit errors seen on the bottom image in Figure 4.7 coordinate with extremely

low amplitudes. Keep in mind that bit errors seen at the output of the decoder, actually

correspond to the sample either 0.6 or 4.8 seconds earlier, depending on the interleaver setting.

The interleaver setting used in the simulation shown in Figure 4.7 was 0.6 seconds. The delay

seen between low signal magnitudes and bit errors in Figure 4.7 is directly related to the length

of the interleaver, so the bit errors are due to extremely deep fades, or very low average input

amplitudes.

There are two things to consider when debugging errors caused by low amplitudes from

frequency dispersion. First, in bad channel environments it is assumed that a long interleaver

is used. By using a long interleaver, many of the bursty errors seen in Figure 4.7 are dispersed

enough for the decoder to correct them. In fact, when the same simulation shown in Figure

4.7 was run with a 4.8 second interleaver, no bit errors were seen at the output of the decoder.

Finally, time dispersion may also help eliminate some of the effects of frequency dispersion.
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Having multiple paths can cause destructive interference, but may also cause constructive

interference. Particularly during deep fades, the terminal relies on the constructive interference

of time dispersion to boost the signal level. The errors seen with frequency dispersion may be

eliminated when time dispersion is added to the channel. In order to use time dispersion to

help eliminate some of the errors seen by deep fades, all software defects pertaining to time

dispersion must first be eliminated.

When lower frequency dispersion rates run error free, but bit errors are seen at higher

rates, the main component of interest is the internal AGC. The main purpose of the AGC is to

smooth the incoming amplitude. The constellation diagram stays relatively constant in symbol

amplitude when frequency dispersion is not present, creating consistent Euclidean distances

for the viterbi decoder. When frequency dispersion is present and the AGC does not keep

the amplitude consistent, the equalized constellation diagram appears to jitter between lower

and higher symbol magnitudes, causing inconsistent Euclidean distances. Viterbi decoders do

not work as well in this environment, since Euclidean distances are used to calculate metrics

for soft decisions. The engineer needs to ensure that the AGC is smoothing the incoming

amplitudes to allow consistent Euclidean distances for the viterbi decoder.

4.2.5 Time Dispersion Isolation

Time dispersion occurs when a signal takes multiple paths to the receiving terminal, causing

multiple copies of the signal to be received with slightly different time delays. This can cause

either additive or destructive interference.

Simulation

As discussed in Section 4.2.3, there are two methods to simulate time dispersion. Assuming

the doppler shift and terminal clock difference issues have already been resolved, the second

method using two existing radios is preferred. Most channel simulators assume that if time

dispersion is present, only two paths are used. The two configurable parameters pertaining to

time dispersion are delay and power. The engineer can set the amount of delay, in milliseconds,

between the first and second signal. Individual power of each signal is also configurable.
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Additive and destructive interference escalates when the two signals have equal power, making

it the hardest power difference to recover from.

Receive Software Expectations

Time dispersion is visible at the receive probe correlators. The top image in Figure 4.8

shows an example of a normal probe correlation. The bottom image shows a correlation with

5 msec of time dispersion.

Figure 4.8 Probe Correlation with 0 msec and 5 msec of Time Dispersion

The first item to check is the delay seen within the probe correlators. Assume the incoming

symbol rate to the probe correlators is 2400 symbols per second. The expected delay within

the probe correlators is 2400 symbols
second 0.005 seconds = 12 symbols. It can be seen in Figure

4.8 that the smaller peak is 12 symbols from the larger peak. If the time dispersion seen in

the probe correlations does not match the delay set at the channel simulator, re-check the

hardware setup and the channel simulator settings.

If errors are seen with time dispersion, there are two potential issues. One issue is the delay

between the two paths, and the other is the power difference. To isolate the potential issue
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with delay differences, begin with a time dispersion of 2 msec and a 10 dB power difference.

The top image in Figure 4.9 shows a probe correlation with 2 msec of time dispersion, while

the bottom image has 5 msec.

Figure 4.9 Probe Correlation with 2 msec and 5 msec of Time Dispersion

The major component on the receive data path that deals with time dispersion is the

matched filter and equalizer. If the terminal logs errors with either 2 or 5 msec of time

dispersion, further investigation is needed into the matched filter and equalizer. If the terminal

does not log errors with 2 msec of time dispersion, but does for 5 msec, the channel estimate,

matched filter, or equalizer was not designed with enough taps to correct the expected time

dispersion. To compensate for 5 msec of delay the minimum number of taps used at the

channel estimate is 2400 symbols
second 0.005 seconds = 12 symbol taps. Typically, to ensure the

terminal can correct for 5 msec of time dispersion, the number of channel taps is greater than

the 12 minimum. From Section 3.4.3.2, it was assumed that there were L+ 1 channel estimate

and matched filter coefficients, h[n] and h∗[−n] respectively, K2 feedback coefficients, a[n], and

K1 + 1 feedfoward coefficients, b[n]. The autocorrelation of the channel estimate was defined
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as x[n] in Equation 3.4 and can be seen below.

x[n] =
L∑
k=0

h∗[−k]h[n− k]

Then q[n] was defined as the convolution of the feedforward filter taps and the autocorrelation

of the channel estimate. It was defined in Equation 3.8 and can be seen below.

q[n] =
0∑

k=−K1

x[k]b[n− k]

For zero-forcing capability within the equalizer, it was shown that the feedforward and

feedback coefficients must be assigned according to equations 3.15 and 3.14, respectively, and

are shown below. It was assumed that K2 ≤ L and K1 ≥ L.

a[n] = q[n]

b = XT
simplifiedqsimplified

Where Xsimplified and qsimplified were defined in Section 3.4.3.2 and can be seen below.

qsimplified =



q[−K1]

q[−K1 + 1]
...

q[−1]

q[0]


=



0

0
...

0

1


, b =



b[−K1]

b[−K1 + 1]
...

b[−1]

b[0]



Xsimplified =



x[0] x[−1] · · · x[−K1 + 1] x[−K1]

x[1] x[0] · · · x[−K1 + 2] x[−K1 + 1]
...

...
. . .

...
...

x[K1 − 1] x[K1 − 2] · · · x[0] x[−1]

x[K1] x[K1 − 1] · · · x[1] x[0]


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To initialize these filter coefficients, it is assumed a correct channel estimate was taken.

Check the channel estimate logic to be sure it matches the LMS algorithm described in Section

3.4.2.1. Mistakes can easily be made with array indices when performing signal mathematics.

Be sure the correct array indices are used for I[n] and h[n] when calculating w[n] and that

the correct corresponding d[n] is used to calculate e[n]. Assume n = 3rd symbol in the probe.

Then,

w[3rd symbol in the probe] =
L∑
k=0

h[k]I[3rd symbol in the probe− k]

where I[3rd symbol in the probe is the 3rd symbol in the known probe, and

e[3rd symbol in the probe] = d[3rd symbol in the probe]− w[3rd symbol in the probe]

where d[3rd symbol in the probe] is the received symbol believed to be the 3rd symbol in the

probe based upon the preamble and probe correlations.

To isolate the other potential issue with equal power on both paths, use a time dispersion

of 2 msec, but similar power. The top image in Figure 4.10 shows the probe correlation with

a power difference of 5dB, while the bottom image has 0 dB power difference. Both images

were created with a time dispersion of 5msec.
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Figure 4.10 Probe Correlation with 5 dB and 0 dB Power Difference

The major components on the receive data path that address time dispersion with equal

power are the probe correlator, matched filter and equalizer. If the terminal logs errors with

either 2 or 5 msec of time dispersion, further investigation is needed into the matched filter

and equalizer, as described earlier in this section. If errors occur only when the two paths

have equal power, the component of interest is the probe correlator. The probe correlator

determines which path of the two has the strongest magnitude and uses it as the major signal.

As can be seen from Figure 4.10, the incoming signal has a larger magnitude on the second

path. If the probe correlators choose the second path as the major signal then the remaining

software should also use that same signal.

When the probe correlators, channel estimator, matched filter and equalizer are working

properly, significant improvements regarding the constellation diagram can be seen. The top

image in Figure 4.11 shows the unequalized constellation diagram with 2 msec of time dispersion

present on the channel. The bottom image shows the improved constellation diagram after the

equalizer.
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Figure 4.11 Unequalized and Equalized Constellation Diagrams with 2

msec of Time Dispersion

The equalized constellation diagram shown in the bottom image of Figure 4.11 shows the

effects of the equalizer. It resembles the 8-ary PSK constellation diagram, whereas the un-

equalized diagram does not. As described above, time dispersion can help frequency dispersion

by constructively interfering. Similarly, frequency dispersion can also help time dispersion by

boosting the signal level during destructive interference. When the same simulation shown in

Figure 4.11 was completed with 5 msec of time dispersion, the equalized constellation diagram

hardly resembled the expected 8-ary PSK constellation. When 1 Hz of frequency dispersion

was added to the 5 msec of time dispersion, the results were much cleaner. The top image in

Figure 4.12 shows the unequalized constellation diagram with 5 msec of time dispersion and 1

Hz of frequency dispersion. The bottom image shows the equalized constellation.
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Figure 4.12 Unequalized and Equalized Constellation Diagrams with 5

msec of Time Dispersion and 1 Hz of Frequency Dispersion

By solving the software defects for frequency and time dispersion, individually, the two

channel effects actually complement each other when placed on the same channel. Even though

Figure 4.12 resembles the harsher channel conditions, both the unequalized and equalized

constellation diagrams look cleaner than in Figure 4.11.

4.3 Software Isolation Summary

By using the timing of bit errors, and applying each channel effect individually, it is easier

to isolate a software defect. Bit errors which occur at the beginning of a reception lead to a

different area of software than errors seen at the end of reception. Likewise, the software defect

which causes bit errors when frequency dispersion is applied is different that the defect which

causes bit errors when time dispersion is applied. Tables 4.2 and 4.3 summarize the software

isolation discussed in this chapter.
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Table 4.2 Software Isolation based upon Bit Error Timing

Functionality Beginning End Throughout

COMMON FUNCTIONALITY

Rate Change Filter
AGC
Translator
Waveshaper

PREAMBLE PATH

PREAMBLE ACQUISITION MODE
Preamble Correlators
False Detection X
Initial Timing Position X
FFT
NSR
Initial Doppler X X
PREAMBLE TRACKING MODE
Autobaud Information Correlators X
Preamble Count Correlators
False Detection X
END OF PREAMBLE MODE
Initialization for Data Mode
Initial Channel Estimate X
Timing Adjustment X

DATA PATH

Probe Correlators
Channel Estimate
Matched Filter
Equalizer / Demodulator
Deinterleaver X
Decoder
EOM Detector X
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Table 4.3 Software Isolation based upon Individual Channel Effects

Functionality Doppler Clock Dif Noise Freq Dis Time Dis

COMMON FUNCTIONALITY

Rate Change Filter X
AGC X
Translator X
Waveshaper X

PREAMBLE PATH

PREAMBLE ACQUISITION MODE
Preamble Correlators
False Detection
Initial Timing Position
FFT
NSR
Initial Doppler
PREAMBLE TRACKING MODE
Autobaud Information Correlators
Preamble Count Correlators
False Detection
END OF PREAMBLE MODE
Initialization for Data Mode
Initial Channel Estimate
Timing Adjustment

DATA PATH

Probe Correlators X X
Channel Estimate X
Matched Filter X
Equalizer / Demodulator X
Deinterleaver
Decoder X
EOM Detector
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CHAPTER 5. SUMMARY AND FUTURE WORK

This thesis provides a new HF engineer some debugging techniques for the Single Tone

modem. In the future, this work can be expanded and explained in further detail. New

tests and isolation techniques can be added to further expand the debugging tree. Automated

testing could also be integrated with the information contained within this thesis. When the

testing software logs an error, it could also log the bit error timing, and any channel effects

for easier debugging. Single Tone is one of many HF modems. It would be beneficial to

have similar documents for the other HF modems. While researching the architecture, it was

discovered that there are many areas where better techniques could be applied. By writing

this type of document, each section of software can be looked at in detail and determine if

better implementation techniques are available.

The MIL-STD-188-110A Single Tone high frequency modem is used by the United States

military as a beyond line-of-sight radio which uses the ionosphere for reflection, rather than

a satellite. The HF Single Tone modem needs to account for typical channel effects such as

doppler shift, terminal clock differences, and noise in addition to some channel effects caused

by the ionosphere such as frequency and time dispersion. The signal processing software can

be difficult to debug when failures occur during performance testing. This thesis provides a

method of debugging by concentrating on two major steps: understanding and isolation. The

engineer must understand the channel model and receive path in order to correlate a test failure

with a specific section of software. This thesis provides a description of both the channel model

and receive path. After the channel model and receive path are understood, isolation of a test

failure through timing patterns of bit errors and individual channel effects help the engineer

isolate the software defect. This thesis creates a matrix of test failures with software isolation
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of which to use for debugging.
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APPENDIX

ACRONYNMS

AM - amplitude modulation

AGC - automatic gain control

ADC - analog to digital converter

AWGN - additive white gaussian noise

BER - bir error rate

bps - bits per second

CW - continuous wave

DAC - digital to analog converter

DFE - decision feedback equalizer

DSB - double side band

EOM - end of message

FEC - forward error correction

FFT - fast fourier transform

FPGA - field-programmable gate array

FSK - frequency shift keying

HF - high frequency

IF - intermediate frequency

ISI - inter-symbol interference

LMS - least mean square

LOS - line-of-sight

LSB - lower side band
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NSR - noise to signal ratio

PSK - phase shift keying

RF - radio frequency

SNR - signal-to-noise ratio

sps - samples per second

SSB - single side band

USB - upper side band

ZF-DFE - zero-forcing decision feedback equalizer
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